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Abstract. The torus parametrization of quasiperiodic local isomorphism classes is introduced
and used to determine the number of elements in such a class with special symmetries or inflation
properties. The method is explained in an illustrative fashion for some widely used tiling classes
with golden mean rescaling, namely for the Fibonacci chain (one-dimensional), the triangle and
Penrose patterns (two-dimensional) and for Kramer’s and Danzer’s icosahedral tilings (three-
dimensional). We obtain a rather complete picture of the orbit structure within these classes,
and also discuss various general results.

1. Introduction

Given a pattern,P, in Rn, one defines itslocal isomorphism class(LI-class for short) to be
the set of all patternsP ′ locally indistinguishable fromP in the sense that arbitrarily large
parts or patches ofP also appear inP ′ and vice versa‖. For the comparison of patches
we allow only translations, not general motions, see [5, 17] for details. (In [21, 17, 22] LI-
classes are calledspecies.) Two standard examples of patterns are Delone point sets and
tilings.

WhenP is crystallographic(i.e. its periods spanRn), its LI-class is trivial, consisting
only of P and its translates. For repetitive but non-crystallographicP, however, the LI-
class has a much richer structure and containsuncountably many(in fact, 2ℵ0) translation
classes [25, 7]. This makes such classes more complicated—and interesting—so good tools
are needed to handle them.

Even in the crystallographic case the LI-class has an attractive topological structure:
since the translateP + ` is identical withP for any` in the lattice,3, of periods ofP, the
LI-class is in one-to-one correspondence with points of a fundamental domain of3 which
(on identifying opposite facets) is ann-dimensional torusTn. With a natural topology
[17, 15] on the set of patterns, this one-to-one correspondence is even topological.

The key to parametrizing LI-classes of quasicrystallographic patterns is to remember
that such patterns can be described as sections through crystallographic ones of higher
dimensions (for which there is a unique minimal value [25, 2]). The LI-class of the
quasicrystallographic pattern is then parametrized by the points of the fundamental domain

§ Present address: Department of Mathematics and Computing Science, The University of the South Pacific, Suva,
Fiji.
‖ This definition is certainly appropriate for patterns that are locally finite (which all patterns studied here are).
There is a case for a broader concept of local indistinguishability when dealing with patterns that are no longer
discrete.
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of the crystallographic pattern it derives from, hence, again by the points on a torus. The
great beauty of this parametrization is that it can be readily used to count and classify patterns
with special properties such as point or rescaling symmetries. Due to the connection with
the torus, the determination of patterns with special symmetries is actually equivalent to
the determination of (generalized) Wyckoff positions in the higher-dimensional lattice, and
independent results on this [18, 12, 9] can be directly compared with our findings. It turns
out that there are various little mistakes in [18, 12], but a computer program to generate
the Wyckoff positions systematically (which will be available soon [9]) coincides with our
figures.

In this article, we illustrate the torus parametrization for several relevant examples,
bringing out the rich orbit structure of the LI-classes. A more complete and rigorous
discussion of the general approach is then given in the appendix. In the body of the paper,
which emerged from seminars given by the third author during his stay at Tübingen in
spring 1994 and 1995, we focus on quasiperiodic tilings in one, two and three dimensions
that show certain point symmetries (such as fivefold symmetry in the plane or icosahedral
symmetry in three-space) as well as a local inflation/deflation symmetry related to the golden
ratio, τ = (1+√5)/2. However, the method is very easy to apply to other cases of interest.

The article is organized as follows. In section 2 we set the scene for the torus
parametrization, illustrating it for the well known Fibonacci chain. We calculate the
number of tilings invariant under inversion and undern-fold inflation and discuss the
corresponding orbit structure for smalln explicitly. Section 3 deals with the analogous
programme for two standard tilings in the plane, namely the Tübingen triangle tiling and
Robinson’s triangular decomposition of the rhombic Penrose tiling. In section 4 we consider
icosahedrally symmetric tilings of three-space, namely Kramer’s original tiling with two
rhombohedra (which is ofP -type and has onlyτ 3-inflation), as well as anF -type and an
B-type icosahedral tiling. This is followed by some concluding remarks.

2. Fibonacci chains

The well known Fibonacci chain can be obtained from the square latticeZ2 by the standard
strip projection method as shown in figure 1. After the choice of a one-dimensional (1D)
subspace,E (in this case a line through the origin of irrational slope 1/τ ) and a so-called
internal space,Eint (in this case the orthogonal complement ofE), one projects intoE
parallel toEint all those lattice points whose projection intoEint parallel toE falls inside a
certain window or acceptance domain,W (in this case the lattice points in the strip which
circumscribes the square with side 1 and centre(0, 0)). This gives a discrete point set inE
which is non-periodic, due to the irrational slope ofE. The intervals between consecutive
points are of two lengths in the ratioτ : 1, which we labela (for the long one) andb (for
the short one). This sequence of intervals is aFibonacci chainwhich we labelFaa. It is
symmetric about the origin with twoa’s at the centre.

2.1. The LI-class

The other chains in the LI-class ofFaa are obtained by translating the 2D spaceE + Eint

(which containsE and the strip) relative to the spaceR2 containing the latticeZ2, and
carrying out the same construction with the new set of lattice points in the strip. In other
words, we considerE+Eint (equipped with a reference point) as a sheet that can be moved
on top ofR2, relative to its origin. Chains obtained in this way are locally isomorphic
to Faa. Two translations that differ by a lattice vector clearly give the same chain inE.
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(1,0)

E

E int

(0,1)

Figure 1. Projection scheme for the Fibonacci chain. The origin of the two-dimensional (2D)
spaceE +Eint is depicted by the big black dot and may be moved relative to the lattice in the
shaded torus region. The chain shown corresponds to the torus parameter(0, 0). The window
(width of the strip) is the projection of the Voronoi cell (not shown) around the origin intoEint.
The upmost line parallel toE (broken) is the upper boundary of the inflated strip.

Conversely, it can be shown (though we do not prove it here) that translations not differing
by a lattice vector give distinct chains inE and that all chains in the LI-class ofFaa are
obtained in this way [25].

We draw attention here to the so-calledsingular chains in the LI-class, which occur
when a lattice point falls on the boundary of the strip causing an ambiguity as to whether
to include the point in the chain. For these, more than one chain corresponds to the same
parameter. In the case of 1D chains derived from the strip construction that are identified
in this way, exactly two singular chains have the same parameter and they differ from each
other in at most two points. Also, these singular chains form a lower-dimensional subset
(in a sense to be made precise later) of the LI-class. All other chains are calledregular.

More generally, singular patterns derived from the cut-and-project construction with
polytopic windows differ from each other at most on a finite number of lower-dimensional
subspaces and form finite classes. (So the ambiguities have the flavour of a surface effect.)
We do not completely know how this is to be modified for more general shapes of windows
(e.g. spherical or fractal). However, if the boundary of the window has Lebesgue measure
0 (and we will not consider any situation other than that), the identification of singular
patterns is meaningful (in view of physical indistinguishability) and still almost all patterns
of the LI-class are regular. In [21, 17] the convention is adopted of identifying singular
patterns in the same class, enabling the correspondence between patterns and parameters to
be regarded as one-to-one.
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2.2. Torus parametrization

We now choose a reference point,r, onE and associate with each pointt ∈ R2 the chain
(or pair of singular chains) inE given by translatingr to t. Since adding a lattice vector
in Z2 to t does not change the chain inE, by the preceding section this puts the points of
the torusT2 = R2/Z2 in one-to-one correspondence with the regular chains and singular
chain pairs in the LI-class ofFaa. Adding a vector,a ∈ E, to t clearly has the effect of
translating the chain by−a, but vectorst1, t2 whose difference is not inE+Z2 correspond
to chains in different translation classes. Sinceτ is irrational, each translation class wraps
aroundT2 infinitely many times in both directions without self-intersection (equivalent to
the fact that the chains are not periodic).

We call the one-to-one correspondence withT2 thetorus parametrizationof the LI-class.
Note that the parametrization depends on the position ofr onE and the position of the

windowW in Eint: if r is moved tor+a onE the parameters are shifted by−a onT2, if
W is translated byb on Eint the parameters are shifted by−b on T2. This is analogous to
parametrizing a Euclidean line by the real numbers: the LI-class ofFaa, like the Euclidean
line, is a uniform structure with no natural origin.To standardize the parametrization of the
Fibonacci chains we shall chooser to be the origin ofE and the intervalW to be symmetric
about the origin ofEint. With this standardizationFaa itself has the parametert = (0, 0).

2.3. Symmetry

The only kind of point symmetry possible for 1D chains is mirror symmetry, which we
shall usually refer to asinversion symmetryin order to have the same terminology for
all dimensions (‘inversion’ meaning the isometryx 7→ −x). Faa is inversion symmetric.
Are there other inversion symmetric Fibonacci chains? Well, clearly the Fibonacci chains
corresponding to pointst and −t on the torus are mirror images, and since the torus
parametrization is a one-to-one correspondence these are the only mirror image pairs
of Fibonacci chains. (Thus, for our standard parametrization which has the reference
point inversion symmetric inE and the window inversion symmetric inEint, inversion
of Fibonacci chains inE derives from inversion inR2.) So inversion symmetric Fibonacci
chains correspond to pointst on the torus witht = −t, i.e. 2t = 0. There are four such
points

(0, 0) ( 1
2, 0) (0, 1

2) and ( 1
2,

1
2) (1)

that form the discrete subgroup of ‘two-division points’ ofT2, isomorphic toC2×C2. The
four corresponding symmetric chains, in the order of the parameters (1), are

Faa = . . . baababaabaababaababaabaababaab . . .
Fa = . . . ababaababaabaababaabaababaababa . . .
Fb = . . . aabaababaababaabaababaababaabaa . . .

Fab = . . . baabaababaaba
{
ab

ba

}
abaababaabaab . . . .

(2)

HereFab is a pair of singular chains, the other three chains are regular.

2.4. Inflation

In addition to inversion symmetry, the Fibonacci chains show another feature typical of
quasiperiodic patterns, namely an inflation/deflation symmetry. Let us explain this in the
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projection picture. In figure 1 the original strip,S1, representing a Fibonacci chainF (Faa
in fact) is enclosed in a stripSτ , τ times as wide. The lattice points inSτ give a refinement
of the chain given byS1. This refinement is itself a scaled version of a Fibonacci chain.
To see this, consider the action of the matrix

M =
(

1 1
1 0

)
. (3)

It has an eigenvector† e = (τ, 1) with eigenvalueτ in the direction ofE, an eigenvector
eint = (−1/τ, 1) with eigenvalue−1/τ in the direction ofEint, and, being integral and
unimodular, acts as an automorphism on the latticeZ2. SoMSτ is a strip of the same width
and direction asS1 and represents a Fibonacci chainF ′. SinceM maps the lattice points in
Sτ one-to-one onto the lattice points ofMSτ , and since it preserves the projection direction
and stretches distances in theE direction by a factor ofτ , the chain given by the lattice
points inSτ is the chainF ′ shrunk by a factor ofτ .

The two features of being locally isomorphic toF and scaling to a refinement of it
(eventually up to a shift) makeF ′ an inflation of F .

How is the torus parameter ofF ′ related to that ofF? Well, if F has the parametert
then the point on the centreline ofSτ that projects onto the origin ofE is t+ (τ/2√5)eint,
soF ′ has the parameter

M

(
t+ τ

2
√

5
eint

)
= Mt− eint

2
√

5
. (4)

As F varies, the inflation given by enclosing the strip forF in a stripτ times as wide with
the lower edges coinciding is represented onT2 by t 7→ Mt+ c, wherec = −eint/2

√
5 is

independent oft.
Choosing a different fixed offset for the wide strip relative to the narrow one leads to

a different inflation on the LI-class which is again represented onT2 by t 7→ Mt+ c, but
with a different value ofc. The above refinement property of the inflation corresponds to
the requirement that, in our picture, the wider strip must enclose the narrower one.

In terms of Fibonacci chains, the inflation illustrated, given byc = −eint/2
√

5,
corresponds to the substitution rule

b 7→ a a 7→ ab. (5)

The inflation given byc = eint/2
√

5, corresponds to the rule

b 7→ a a 7→ ba. (6)

More generally,c = βeint/2
√

5 with |β| 6 1 has the effect

b 7→ a a 7→ ab or ba (7)

the proportion ofa’s that change toba being (β + 1)/2. Only countably many of these
inflations are local, in the sense that whether a givena changes toab or ba can be determined
by looking at the part ofF within a bounded distance of thata.

In particular, the symmetric inflation given byc = 0, discussed in [17], in which half
thea’s change toab and half toba, is non-local. It can be described by the rulea 7→ x−j xj
in (7), wherex−j x−j+1 . . . x−1ax1 . . . xj−1xj is the shortest segment ofF centred on thea
to be inflated for whichx−j 6= xj . It is non-local because a Fibonacci chain has arbitrarily
long symmetric neighbourhoods centred ona’s. In particular, for the centrala of Fa the
symmetry never breaks and the rule is undecidable, resulting in inflation to a singular chain
with two possibilities.

† For later convenience, we do not use unit vectors here.
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Inflations derived from other values ofc, with a non-zero part parallel toe, consist
of one of these followed by a translation. Note that the decomposition into substitution
and translation is not unique: for example, inflation (6) is identical to (5) translated by the
length of a. This non-uniqueness reflects the fact thatc can be written in many ways as
αe+ βeint/2

√
5 (modZ2), where|β| 6 1 to guarantee the refinement property, butα ∈ R

arbitrary. However, distinct pointsc of T2 give distinct inflations.
The above discussion makes the following definition natural.

Definition. An inflation on the LI-class of Fibonacci chains is a mappingT2→ T2 of the
form

t 7→ At+ c (8)

wherec ∈ T2 andA is a non-singular 2× 2 integer matrix with eigenvectorse andeint. A
family of inflationsis a set of inflations that share the same matrix,A, but havec running
through all points ofT2.

This definition makes plain that each family of inflations, such as the LI-class itself, is
parametrized byT2. As mentioned above, the inflation (given by a certainc) may be looked
at in (countably many) different ways in the spaceE as a transformation on the chains.

In our present example, the situation is as follows. Givenc ∈ T2, there are countably
many valuesc′ ∈ R2 with c′ = αe+βeint/2

√
5≡ c (modZ2), |β| 6 1. Every choice ofc′

represents a different view of the same inflation, whereβ tells us the proportion ofa’s that
change toab, and−ατ/√τ + 2 gives the distance of the inflation fixed point to the origin.
(Although there is no natural choice, we shall usually take the representative with minimal
|α|.)

Changingc by a scalar multiple ofe merely changes the translation component of
the inflation, but other changes toc change the inflation more fundamentally. Due to the
conditions mentioned above,A must in fact take the form

A = r1I+ sM r, s ∈ Z (9)

where M is the matrix of τ -inflation as in equation (3). A represents an invertible
inflation/deflation symmetry if and only ifA = ±Mm with m ∈ Z. We call the eigenvalue
of A in E the inflationmultiplier.

The inflation, given by its representation onT2, generates an infinite Abelian group
isomorphic withC∞ which acts on the LI-class. This gives rise to some kind of generalized
symmetry [1], but not to a point symmetry because it cannot be represented as an isometry.
In the sequel, we shall call chains (or patterns)I n-symmetric if they are invariant undern-
fold inflation. Simultaneously, we shall use the same symbol to denote the group generated
by I n, whereI stands for the special inflation under consideration (i.e.M in this case).
Note that, as groups, they are all isomorphic with the infinite cyclic groupC∞.

2.5. Applications of the torus parametrization

The usefulness of the torus parametrization stems from the simple behaviour of what might
be called the ‘affine torus operators’ (8).

Fundamental fact. An operator of the form of (8), whereA is any non-singular 2× 2
integer matrix with| detA| = d, is ad-fold cover ofT2 by itself, in the sense that, for each
w ∈ T2, there are exactlyd distinct solutionst ∈ T2 of

At+ c = w. (10)
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We give a proof of this in the appendix. Note that the number of solutions is not only
independent ofw but also independent of the constant term,c, of the operator.

Here are some immediate applications of the fundamental fact. When interpreting them
for Fibonacci chains we need to bear in mind that the two singular chains are attached to
one parameter and must be treated as a single entity. As above, the following equations are
to be understood modT2.

How many Fibonacci chains are inversion symmetric? As we have seen, these
correspond to pointst ∈ T2 with 2t = 0. Taking A = 21I and c = 0 tells us that
there are| det(21I)| = 4 of these.

Is inflation of Fibonacci chains invertible? Since| detM| = 1 there is exactly one
solution ofMt+ c = w for eachw, so every inflation in the family (for anyc whatever)
is a one-to-one correspondence fromT2 to itself and each Fibonacci chain comes from a
unique precursor under the inflation.

How many Fibonacci chains are inflation-invariant? We need to count the solutions of
Mt+ c = t, which can be rewritten as(M − 1I)t+ c = 0. Since| det(M − 1I)| = 1 there
is precisely one inflation-invariant chain. For the non-local symmetric inflationc = 0 this
is Faa; for the local inflationc = ( 1

2, 0) = (e− eint)/2
√

5 it is the singular chainFab.
As well as each inflation,c, having a unique fixed point, namelya = −Mc, for each

point a of T2, there is a unique inflation that leaves it invariant, namely that given by
c = a−Ma.

How many Fibonacci chains have inflation orbits of length 2? Or, in other words, how
many Fibonacci chains areI 2-symmetric? The relevant equation is(M2−1I)t+c = 0. Since
| det(M2−1I)| = 1 there is only one solution. But this must represent the inflation-invariant
chain, so there are no chains with an inflation orbit of length 2.

How many Fibonacci chains areI 3-symmetric? Since| det(M3−1I)| = 4 there are four
chains left invariant by triple inflation. There is only one inflation-invariant chain, so the
remaining three form a single orbit of length 3.

We can say more about what these last four chains are. The symmetric inflation with
c = 0 acting on a symmetric chain gives another symmetric chain. (This is clear either
directly from the strip construction or from the observation thatM commutes with−1I, the
inversion.) So the set of four inversion symmetric chains is stabilized by this inflation. In
view of the foregoing, one must be inflation-invariant and the others a three-cycle under
inflation. In fact,Faa is invariant under symmetric inflation and(Fb,Fa,Fab) is a three-
cycle.

Are there other inflations in the family that commute with inversion? If so then
M(−t) + c = −(Mt + c) for all t, giving c = −c, so c must be one of the two-division
points ofT2. These come from the points ofR2 that are centres of inversion symmetry of
the latticeZ2. We have already seen thatc = ( 1

2, 0) gives a local inflation that fixesFab.
The statistics for all four of these inflations are given in table 1. There, we also list the fixed
points (a) of the inflations which coincide with the torus parameters of the corresponding
inflation invariant Fibonacci chains. Furthermore, we give more special information on
which fraction ofa’s inflate to ba for the representative specified by the distance of the
inflation fixed point to the origin inE.

These are the only inflations in the family that stabilize the set of symmetric chains.
Only the second of them,c = ( 1

2, 0), is local. It is interesting to note that the cubes of
these inflations are all the same and all equal to the translationless inflation given by the
symmetric local ruleb 7→ aba, a 7→ ababa, which fixes all four symmetric chains.

We see here a connection between symmetric patterns and short inflation orbits that will
also feature in higher-dimensional patterns. What has happened is this. There is a small
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Table 1. Inversion symmetric inflations of the Fibonacci LI-class.

Infl. fixed Proportion ofa’s Shift Action on the
c point (a) that inflate toba in E symmetric chains Local?

(0, 0) (0, 0) 1
2 0 (Faa)(Fb,Fa,Fab) No

( 1
2 , 0) ( 1

2 ,
1
2) 0 (τ2/2)e (Fab)(Fa,Fb,Faa) Yes

(0, 1
2) ( 1

2 , 0) 1/2τ (τ4/2)e (Fa)(Fb,Fab,Faa) No
( 1

2 ,
1
2) (0, 1

2) τ/2 (τ3/2)e (Fb)(Fa,Faa,Fab) No

number of symmetric chains. This set of chains is stabilized by the symmetric inflation
(since it commutes with inversion) and hence decomposes into short inflation orbits. The
set of symmetric chains is a group on the torus and hence stabilized by the corresponding
translations. Consequently it is stabilized not only by the symmetric inflation but also by
the inflation obtained by combining it with each of these translations. Fortuitously, one of
these inflations is local.

2.6. Counting inflation orbits

The answers to the last three questions above immediately generalize: the number of
Fibonacci chains withIn-symmetry is| det(Mn − 1I)|. Furthermore, there is a uniform
way of computing these determinants. Since the eigenvalues ofM are τ and its algebraic
conjugateτ ′ = −1/τ , and since the determinant of a matrix is the product of its eigenvalues,
we have

det(Mn − 1I) = (τ n − 1)((τ ′)n − 1) (11)

= N2[τn − 1] (12)

where, forα = r + sτ ∈ Q(τ ), N2[α] is the norm of α defined as

N2[α] = αα′ = (r + sτ )(r + sτ ′) = r2+ rs − s2. (13)

Here,Q(τ ) = {a + bτ |a, b ∈ Q} = Q(√5) is the quadratic field of degree 2 over the
rationals generated byτ . Note thatN2[α] is an integer ifr, s in (13) are integers. For
details on this and how to formulate the cut-and-project scheme systematically in number
theoretic terms† we refer the reader to [22].

The number,an, of Fibonacci chains withIn-symmetry is thus given by

an = |N2[τn − 1]| = −N2[τn − 1] = τn + (τ ′)n − 1− (−1)n (14)

which differs fromτn by less than 2. Being the roots of the equationx2 − x − 1 = 0, τ
andτ ′ both satisfyxn = xn−1+ xn−2, and hencean satisfies the recurrence

an = an−1+ an−2+ 1− (−1)n. (15)

This allows us to compute it very quickly starting from the valuesa1 = a2 = 1 which we
already have. The values up ton = 15 are given in table 2. (In terms of the Fibonacci
numbers,fn, we havean = fn+1+ fn−1− 1− (−1)n, since this sequence satisfies the same
recurrence and has the same starting values.)

As already glimpsed in the casesn = 2 andn = 3, the chains with inflation orbits of
length n are those invariant undern-fold inflation but not underm-fold inflation for any

† Although we shall use this alternative approach quite frequently, we cannot give a full account of it in this
article.
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Table 2. Inflation orbit counts for 1D cut-and-project patterns withτ -inflation.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

an 1 1 4 5 11 16 29 45 76 121 199 320 521 8411364
bn 1 0 3 4 10 12 28 40 72 110 198 300 520 8121350
cn 1 0 1 1 2 2 4 5 8 11 18 25 40 58 90

proper factor,m, of n. Let bn be the number of chains invariant undern-fold inflation but
not underm-fold inflation for anym < n. Then

bn = an −
∑
m<n
m|n

bm (16)

allowing us to calculate thebn’s from thean’s recursively. (Herem|n meansm dividesn.)
Finally, sincebn counts chains in inflation orbits of lengthn it must be divisible byn and

cn = bn

n
(17)

is the number of orbits. Table 2 also listsbn and cn, the fact that the latter are integers,
despite being obtained by being divided byn, provides a check on our arithmetic.

The action of inflation onT2 is a dynamical system and the explicit expression (14)
enables us to write down its Artin–Mazurζ -function (compare with [20, ch 5] for the
concept and some general results)

Z1(x) = 1− x2

1− x − x2
. (18)

This gives thean’s through the expansion

logZ1(x) =
∞∑
n=1

an

n
xn = x + 1

2x
2+ 4

3x
3+ 5

4x
4+ 11

5 x
5+ · · · (19)

and thecn’s through the Euler product decomposition

1

Z1(x)
=
∞∏
n=1

(1− xn)cn = (1− x)1(1− x2)0(1− x3)1(1− x4)1(1− x5)2 . . . . (20)

It has the functional equationZ1(x) = Z1(−1/x) and conforms to the ‘Riemann hypothesis’
that its zerosα satisfy N2[α] = 1. The pole of logZ1(x) closest to zero isx = 1/τ ,
confirming the growth ratean ∼ τn asn→∞.

Let us briefly remark that we can also obtain a power series generating function for the
an’s through the logarithmic derivative ofZ1(x) as follows:

F1(x) = xZ′1(x)
Z1(x)

=
∞∑
n=1

anx
n. (21)

Then, one may also obtain a generating function for thebn’s in terms of a Lambert series,
compare with [10].
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2.7. Interaction between inflation and point symmetry

We now investigate the orbit structure of the Fibonacci LI-class under the generalized
symmetry groupC2 × I 1 generated by inversion and inflation (compare also with [1] for
this concept).

One might expectcn to be even, since Fibonacci chains occur in mirror image pairs,
so, for the inflations that commute with inversion, each orbit has a mirror image orbit of
the same length. The oddness ofc1 and c3 is accounted for by the fact that the orbits
they count consist of symmetric chains. But we know there are no other symmetric chains.
The oddness of othercn’s must be accounted for by the fact that an inflation orbit can be
‘symmetric’ even though the chains in it are not. This occurs whenn is even and the mirror
image of a chain in the orbit is also a multiple inflation of the same chain, that is (in the
case of the inflationc = 0)

Mmt = −t (22)

for somem. As inversion commutes with inflation, this can only happen form = n/2,
wheren is the length of the inflation orbit oft. The full symmetry of a chain in such
an orbit is then−I n/2 rather thanI n, where−I k stands for the group generated by the
inversion-inflation−Mk andI n = (−I n/2)2.

To count the symmetric inflation orbits letãn be the number of solutions to (22) with
m = n/2 (andãn = 0 whenn is odd). Using the fundamental fact we have, for evenn,

ãn = |det(Mn/2+ 1I)| (23)

= N2[τn/2+ 1] (24)

= τn/2+ (τ ′)n/2+ 1+ (−1)n/2 (25)

which satisfies the recurrence

ã2k = ã2(k−1) + ã2(k−2) − 1+ (−1)k (26)

starting withã2 = 1, ã4 = 5. If now b̃n is the number of pointst ∈ T2 that satisfy (22) with
m = n/2 and have exact ordern under inflation theñbn can be computed much asbn was
(with a slight extra complication† in allowing for the symmetric chains) and the number of
symmetric orbits of lengthn is given by

c̃n = b̃n

n
. (27)

Some values of̃an, b̃n andc̃n are listed in table 3, and we see thatcn− c̃n, being the number
of orbits of chains whose full symmetry isI n, is even in all cases listed. These numbers,
like those in table 2, are the same for every inflation in the family.

Tables 2 and 3 give complete information on the various orbit counts for the Fibonacci
chain. We note that these figures do not depend onc, so are the same for every inflation in
the family (although, of course, the orbits themselves are different for different inflations).
What is more; these orbit counts are functions of the inflation multiplier,τ , alone and thus
also apply to all other LI-classes of chains withτ -inflation and embedding dimension two.

So far we have worked with single chains, but the results also extend to translation
classes of chains, with no changes to the counts. Details of this are given in the appendix.

† The explicit rule is as follows. In the first step, one subtracts either 4 fromãn (if n is divisible by 6) or 1
(otherwise). In the second step, one subtracts anyb̃m from ãn wherem < n andn = km with k odd.
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Table 3. Symmetric inflation orbit counts for 1D cut-and-project patterns with inversion
symmetricτ -inflation.

n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

ãn 1 5 4 9 11 20 29 49 76 125 199 324 521 8451364
b̃n 0 4 0 8 10 12 28 48 72 120 198 312 520 8401350
c̃n 0 1 0 1 1 1 2 3 4 6 9 13 20 30 45

3. Planar tilings with τ -inflation and tenfold symmetry

The torus parametrization is more powerful for the description of patterns and tilings in two
and higher dimensions. The main reason is the possibility of non-trivial symmetries. In the
previous section, we described the general set-up, with focus on the projection picture. In
particular, we have used a projection-based approach to inflation, very much in the spirit of
[21, 17]. Although this is very systematic, there is a consequence: an inflation constructed
that way is usually not local, and one has to decide upon locality afterwards. This is in
general not so easy to do, in particular when the pattern lives in higher dimension.

There exists, however, also a slightly different point of view. Instead of generalizing the
projection-based concept of inflation (as in [17]), one can considerlocal inflation rules as
defined in [5], i.e. one actually starts from examples where the LI-class of a pattern is defined
through the fixed point of a local inflation rule. Since this is widely used in literature, we
will now adopt this point of view. Clearly, before we can apply the torus parametrization,
we have to know that the LI-class under consideration can be obtained equally as well by
the projection scheme. But that can be decided upon rather easily [5], and it will be fulfilled
in all examples below. So, the torus parametrization may be employed again to investigate
the structure of the LI-class. Let us first see how this works in 2D, where we first present
a suitable set-up for the projection used.

3.1. Projection method

To use the cut-and-project construction to obtain a non-periodic 2D pattern,P, from a
four-dimensional (4D) lattice,3, we require two 2D subspacesE,Eint ⊂ R4, such that the
intersection of any two of3, E, Eint is {0}, and a windowW ⊂ Eint. ThenP consists of
the projection onE parallel toEint of all points of3 whose projections onEint parallel to
E fall insideW . The other patterns in the LI-class ofP are obtained by translatingE+W
relative to3 before carrying out this operation. The patterns are labelled by the point inR4

to which the origin ofE is translated. With the exception of the singular patterns (those for
which a point of3 lies on the boundary ofE+W + r) two patterns in the LI-class are the
same if and only if their labels are identical mod3. So the LI-class ofP is parametrized by
T4 = R4/3, a 4D torus, (with the proviso, as before, that nearly identical singular patterns
share the same parameter).

An inflation on the LI-class ofP is a mappingT4→ T4 of the form

t 7→ At+ c (28)

wherec ∈ T4 andA is a linear operator onR4 such thatE andEint are eigenspaces ofA
andA3 ⊆ 3. The eigenvalue ofA on E is themultiplier of the inflation.

Again we use the fundamental fact that, just as in the 1D case, ifB is any linear operator
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Table 4. Inflation orbit counts for 2D cut-and-project patterns withτ -inflation.

n 1 2 3 4 5 6 7 8 9 10

a2
n 1 1 16 25 121 256 841 2025 5776 14 641
b
(2)
n 1 0 15 24 120 240 840 2000 5760 14 520
c
(2)
n 1 0 5 6 24 40 120 250 640 1 452

on R4 with B3 ⊆ 3 then

t 7→ Bt+ c (29)

gives a well-defined mappingT4 → T4 that is a d-fold cover of T4 by itself, where
d = |detB|.

3.2. The multiplierτ case

We now suppose thatA has eigenvaluesτ and τ ′ on the eigenspacesE and Eint. An
immediate application of the fundamental fact is that since detA = τ 2(τ ′)2 = 1 inflation is
a one-to-one map fromT4 to itself and hence is invertible.

Let a(2)n be the number of patterns of the LI-class invariant undern-fold inflation. Then
the above fact tells us that

a(2)n = |det(An − 1I)| = |Product of the eigenvalues of(An − 1I)|
= (τ n − 1)2((τ ′)n − 1)2 = N2[τn − 1]2 = a2

n (30)

so the numbersa(2)n are the squares of the numbers obtained in table 2 for the 1D case.
From these the numberb(2)n of patterns invariant undern-fold inflation but not underm-fold
inflation for anym < n and the numberc(2)n of inflation orbits of lengthn can be calculated
as before. The first few of these numbers are given in table 4. Sincea(2)n ∼ τ 2n asn→∞,
c(2)n ∼ τ 2n/n.

The ζ -function of this inflation operator is

Z2(x) = (1− x − x2)2(1+ x − x2)2

(1− 3x + x2)(1− x)2(1+ x)4 (31)

with functional equationZ2(x) = Z2(1/x) and Riemann hypothesisN2[α] = −1 for all
zerosα. The pole of logZ2(x) closest to zero isx = 1/τ 2, confirming that thean grow
like τ 2n.

3.3. The cyclotomic fieldQ(e2πi/5)

To count the patterns with a given point symmetry we need to lift the symmetry to an
operator,A, acting on the lattice,3, used for the cut-and-project construction (for example,
inversion lifts to−1I). Then, with a special matrix representation (e.g. as given in [3]), one
can calculate the various counts as determinants of matrices.

For the familiar planar patterns with decagonal symmetry, however, there is a good way
of simplifying this by exhibiting the determinant as the norm of a number in the degree 4
cyclotomic field

Q(ξ) = {q1+ q2ξ + q3ξ
2+ q4ξ

3|ξ = e2π i/5, q1, q2, q3, q4 ∈ Q}. (32)

This field hasQ(τ ) as a real subfield, and indeed

Q(τ ) = Q(ξ) ∩ R. (33)
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There is an automorphismσ of Q(ξ), fixing Q, defined byσ(ξ) = ξ2, which generates
a cyclic group of automorphisms of the order of 4 (σ 2 is complex conjugation,σ 4 is
the identity) called theGalois group of Q(ξ) over Q. The effect ofσ on Q(τ ) is that
σ(τ) = τ ′ = −1/τ , where′ is the algebraic conjugation inQ(τ ) used above. The absolute
algebraic norm of a numberα ∈ Q(ξ) is now defined by

N4[α] = ασ(α)σ 2(α)σ 3(α) = αα(αα)′ = N2[|α|2]. (34)

The integers ofQ(ξ) areZ[ξ ] = {u1+ u2ξ + u3ξ
2+ u4ξ

3|u1, u2, u3, u4 ∈ Z} and norms of
integers are rational integers, i.e. numbers inZ.

Now if we representR4 asC2 and put

34 = {(α, σ (α))|α ∈ Z[ξ ]} (35)

then34 is the root latticeA4 (see also [22]) and its orientation is such that, with the two
copies ofC asE andEint, cut-and-project (with appropriate windows) gives the well known
decagonal planar patterns [5]. Choosing the regular decagon whose vertices are the 10th
roots of 1 as the window inEint gives a point set inE that is in the MLD-class of the
Penrose tiling, illustrated in figure 2 in the form of Robinson’s triangular decomposition
which is another representative of that class. Choosing as the window the regular decagon
with centre 0 and one vertex(1+ ξ)/τ gives a point set in the MLD-class of the Tübingen
triangle tiling (also illustrated in figure 2), namely its set of vertex points.

Given a λ ∈ Z[ξ ] we obtain a linear operatorAλ on C2 which coincides with
multiplication by λ on the first factor and multiplication byσ(λ) on the second. Then
Aλ34 ⊆ 34 and henceAλ acts onT4. Also

detAλ = |λ|2|σ(λ)|2 = N4[λ]. (36)

For example,A1 is the identity operator 1I andAτ is the inflation operator.

3.4. Rotation symmetry

Let us describe in some detail the examples just mentioned, namely the Tübingen triangle
tiling (abbreviated TTT) and Robinson’s decomposition of the rhombic Penrose tiling
(RD), in order to use them as illustrations when looking at symmetric patterns. They

Figure 2. Decagonal versions of the Tübingen triangle tiling (TTT, left) and Robinson’s
decomposition of the rhombic Penrose tiling (RD, right). Both are singular, exactly symmetric
under reflection in thex-axis, and exist in 10 rotated variants each.
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Figure 3. Local inflation rules for TTT (left) and RD (right).

are constructed through iterated inflation with the rules shown in figure 3. Although the
differences between the two local inflation rules look small, they define two different LI-
classes that do not even belong to equivalent tiling classes with respect to mutual local
derivability [5]. These inflations both correspond to choosingc = 0 in (28).

Due to fivefold symmetry, it is not possible to realize these tilings as sections of periodic
structures of dimensions less than four (see [2, appendix A]). Consequently, the torusT4 is
a generically one-to-one parametrization of these LI-classes.

We now count patterns with particular point symmetries and note their inflation orbits.
The full point symmetry group of these LI-classes isD10, generated by a tenfold rotation
(calledR) and reflection in thex-axis (S).

3.4.1.C10 symmetry. The number of patterns invariant under rotation of order 10 is

|N4[−ξ3− 1]| = |N2[τ + 1]| = 1. (37)

(Note that e2π i/10 = −ξ3.) So only the pointt = 0 in T4 gives a pattern withC10 symmetry.
Due to our choice of an inflation withc = 0 it is clear that this is also reflection symmetric
and inflation invariant. Thus, the full symmetry of the pattern isD10× I 1. In the RD tiling
case this corresponds to the set of 10 singular tilings collectively known as the ‘cartwheel’.
In the Tübingen tiling case it is also a set of 10 singular tilings. A representative of each
is shown in figure 2.

3.4.2.C5 symmetry. The number of patterns invariant under rotation of order 5 is

|N4[ξ − 1]| = |N2[3− τ ]| = 5. (38)

One of these is the one withD10 symmetry. Since inflation commutes withR and S,
the other four are permuted by inflation and hence form a single inflation orbit of length 4.
(Table 4 tells us that there is one singleton orbit—already accounted for—and no doubleton.)
Consequently, the space-inverted versions of these patterns have to lie in the same inflation
orbit. Since no pattern is inversion symmetric itself, all patterns must be(−I 2)-symmetric.
By means of the explicit matrix representation one also finds invariance under the reflection
−S. Consequently, their full symmetry isD5 × (−I 2). The corresponding TTT patterns
are singular, see figure 4, while the corresponding RD tilings are regular, see figure 5, and
consist of the ‘sun’, the ‘star’ and theirS reflections.

3.4.3. C2 symmetry. This is 2D inversion symmetry so the number of patterns with this
symmetry is

N4[2] = N2[4] = 16 (39)
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Figure 4. The four members of LI(TTT)
with fivefold symmetry (singular). They
form a four-cycle under inflation (shown in a
clockwise arrangement). Each exists in five
rotated versions and their mirror images.

Figure 5. The four members of LI(RD) with
fivefold symmetry (regular). They also form
a four-cycle (clockwise) under inflation.

and the corresponding points ofT2 are the two-division points. One of these gives theD10

pattern, while the remaining 15 consist† of the five inflation orbits of length 3. These five
orbits are related by the rotations of the order of 5, since clearly none is invariant under
fivefold rotation itself. Since 15 is odd and inversion commutes with the reflectionS, at
least one of these patterns is invariant underS so hasD2 symmetry. Then all three patterns
in its inflation orbit have this sameD2 symmetry and those in the other inflation orbits
have conjugateD2 symmetries, i.e. a different reflection axis. Thus, all patterns withC2

† It is a general fact of centralτ -inflation in n dimensions that the patterns withI3 symmetry are precisely the
inversion-symmetric ones: sinceτ3 − 1 = 2τ and sinceτ is a unit, the equationsI3t = t and−t = t have the
same set of solutions onT2n.
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Figure 6. A Robinson tiling withC2×C2 symmetry. Reflection in thex-axis is exact, the one
in the y-axis leaves a single worm of mismatches along they-axis.

symmetry in fact haveD2 × I 3 symmetry and (leaving aside theD10 pattern) consist of
three distinct patterns in one inflation orbit and rotations of these three. In the Penrose
tiling case these patterns occur in singular pairs for which appropriate names might be the
‘binary star’, the ‘binary sun’ and the ‘flip-flop’. TheD2 symmetry makes them ideal for
kitchen floor tilings! One is shown in figure 6.

This accounts for all rotations, so all patterns with rotational symmetry are also invariant
under reflection as well as under some power of the inflationI .

3.5. Reflection symmetry, subtori and worms

Since the action of complex conjugation onC × C preserves34 there is a well-defined
complex conjugation onT4 which we denote byt→ t, and two planar patterns are mirror
images in the real axis if and only if their parameters onT4 are complex conjugates.

The 2D subspaceR×R of C×C meets34 in the 2D lattice32 = {(α, α′)|α ∈ Z[τ ]}.
Consequently, in the reduction ofC2 to T4 = C2/34, R × R maps to the subtorus
T2 = R2/32.

Since points inT2 are fixed under complex conjugation we have an entire subtorus of
patterns with reflection symmetry in the real axis. Moreover, these are the only points on
T4 fixed by complex conjugation: ift = (z, w) and t = t then 2(Im(z), Im(w)) ∈ 34,
but every purely imaginaryα ∈ Z[ξ ] is of the form 2 Im(β) for someβ ∈ Z[ξ ] and hence
(z, w) ∈ R× R (mod34).

When the parametert lies in the subtorus, the intersection of the corresponding pattern
with the real axis derives from the points of32. There is a linear map onR2 taking32 to
the square lattice while simultaneously taking thex-axis to a line of slopeτ ′. Consequently
the centre line of a 2D pattern with reflection symmetry in the real axis is a pattern in a 1D
LI-class (differing from the Fibonacci LI-class only in the width of the window) and there
is a one-to-one correspondence between 2D reflection symmetric patterns and the patterns
of this LI-class (which represent the well known infinite ‘worms’ of certain Penrose tilings).
Put another way, each infinite worm extends uniquely to a pattern of the 2D LI-class with
reflection symmetry in the real axis. Furthermore, an inflation on the 2D LI-class which
commutes with reflection restricts to an inflation on the 1D LI-class.

There is a behavioural difference between the RD and TTT LI-classes: because the real
axis is the only horizontal line to meet the decagonal window for the RD class in an interval
of length 2, infinite worms occur in RD patterns only as axes of reflection symmetry; in
TTT patterns, by contrast, every pattern contains lines in the 1D LI-class that reflection axes
belong to [3].
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The treatment of reflection symmetry in the imaginary axis is similar: again there is a
single 2D subtorus (invariant under the negative of complex conjugation) of patterns with
this symmetry and the patterns on the reflection axes form a 1D LI-class. This time the
behaviour of the RD and TTT classes is reversed: for the TTT class there is a 1D LI-class
that occurs only in reflection axes, but for the RD class the 1D LI-class of the reflection
axes occurs in all patterns, reflection symmetric or not.

More generally, the operator obtained by combining complex conjugation with
multiplication by (−ξ)k corresponds to the reflection symmetryRkS. The patterns with
this symmetry also form a single 2D subtorus, which we denote byT2(k). Of the 10
subtori obtained in this way those with evenk are, like the subtorusT2(0), invariant under
complex conjugation and those with oddk are, like the subtorusT2(5), invariant under
negative complex conjugation. The 10 subtori are cyclically permuted by the action of−ξ .

From what we already know of symmetric patterns in the 2D LI-classes we can describe
the intersection properties of these subtori as follows.

(1) All the subtori have a common point, corresponding to the pattern withD10

symmetry,
(2) T2(1), T2(3), T2(5), T2(7) andT2(9) have five points in common, corresponding

to the single pattern withD10 symmetry and the four patterns withD5 symmetry,
(3) T2(k) and T2(k + 5) meet at four points, corresponding to the pattern withD10

symmetry and three patterns (for each 06 k 6 4) with D2 symmetry forming an inflation
orbit.

(4) All intersections of subtori are included among the foregoing.
It is now possible to count how many inflation orbits of lengthn consist of patterns

with reflection symmetry. This number is 10cn with the cn of table 2 (namelycn for each
of the 10 subtori corresponding to reflection axes), except for the finite number of cases
of patterns with more than one reflection symmetry, which we have already considered in
detail. The first inflation orbits to have patterns without reflection symmetry occur atn = 5,
where there are 20 orbits of patterns with reflection symmetry and four of patterns without.

3.6. Interaction between inflation and point symmetry

Let us briefly look at the action of point symmetries on inflation orbits. A more systematic
treatment of a joint classification is given in the appendix.

Since|D10| = 20, when the numberc(2)n in table 4 is not divisible by 20 there must be
some interaction between inflation orbits and point symmetry. The casesn = 1 andn = 3
have already been considered in detail.

Whenn = 4 there is one inflation orbit in which the patterns have point symmetryD5

and extended symmetryD5× (−I 2). Consequently the orbit itself hasD10 symmetry. The
remaining five orbits consist of patterns with point symmetryS and extended symmetry
S × (−I 2), as can be deduced from table 3. These orbits haveD2 symmetry.

Whenn = 5 there are four orbits of patterns that have point symmetry but are invariant
under IR±4. These are ‘spirals’ on which the action of inflation is the same as rotation
through±4π/5. For the TTT and RD classes these are the patterns generated by the local
inflation centred at the fixed point of the rotation-homothety that maps the large obtuse-
angled triangle to the small one on the left half of each diagram in figure 3. (The other three
orbits in each case result from the action ofD2 on this one.) SinceN4[τ − ξ±2] = 11 these
are the only patterns invariant underIR±4 (apart from the cartwheel withD10×I symmetry).
SinceN4[τ − ξ ] = 1 there are no patterns with exactIR2 symmetry. The remaining three
orbits with n = 5 consist of patterns withS symmetry, as we have already seen.
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A similar situation occurs withn = 10: there are two orbits of patterns withIR±3

symmetry. For the TTT and RD classes these are spirals on which the action of inflation
is the same as rotation through±3π/5. They are generated by the local inflation centred
at the fixed point of the rotation-homothety that maps the large acute-angled triangle to the
lower small one on the right half of each diagram in figure 3. In each LI-class this orbit
and its mirror image comprise the only patterns for which inflation is the same as an order
of 10 rotation.

Let us finally mention that, sinceτ 10− 1 = 11τ 5 and τ 5 is a unit, the 114 = 14 641
patterns withI 10 symmetry correspond to the 11-division points ofT4, which are isomorphic
to the vector spaceF4

11 (whereF11 is the finite field with 11 elements). This space is spanned
by four elements, where we may choose one non-trivial member (i.e. with parameterx 6= 0)
out of each of the four sets of ten ‘spiral’ patterns with(IRk) symmetry (fork = 3, 4, 6, 7).

4. Tilings of three-space with icosahedral symmetry

Since the experimental discovery of quasicrystals those with icosahedral symmetry (and
embedding dimension six) have attracted most attention [14, 13, 6]. Theoretically, three
types are possible [23], calledP , F andB, derived from the primitive, face-centred and
body-centred six-dimensional (6D) hypercubic lattices, respectively. For each of these types,
the three-dimensional (3D) subspacesE andEint are the same. The lattice points can no
longer be represented by algebraic numbers as in the planar case (quaternions would be
needed) but the following is still true for each of these lattices3: if A is a linear operator
on R6 that stabilizes3, E andEint, and if d is its determinant onE, thend ∈ Z[τ ] and
detA = N2[d]. Among such operators, for each of the three types, are those that induce on
E all symmetries of the icosahedron. For the fcc and bcc lattices there is also an operator
M of this kind that hasE andEint as eigenspaces with eigenvaluesτ andτ ′, giving rise to
an inflation with the multiplierτ . It is well known, however, thatM3 is the smallest power
of M to stabilize the primitive lattice,Z6. Hence the inflation group ofP -type icosahedral
quasicrystals is generated byτ 3-inflation.

4.1. Counting inflation orbits

TheF - andB-type icosahedral quasicrystals have an inflation with the multiplierτ and the
number of patterns of such an LI-class invariant undern-fold inflation is given by

a(3)n = N2[(τ − 1)2] = a3
n. (40)

The corresponding numbers,b(3)n , and orbit counts,c(3)n , are given in table 5. Theζ -function
of this inflation operator is

Z3(x) = (1− 3x + x2)3(1+ 3x + x2)3(1− x2)10

(1− 4x − x2)(1− x − x2)6(1+ x − x2)9
(41)

with a functional equation and Riemann hypothesis as forZ1(x).
Examples ofF -type quasicrystals are the Socolar–Steinhardt tiling [26] and Danzer’s

tiling [6], which belong to the same MLD-class (see [24, 8]). For these the inflation
with c = 0 is local. There are alsoB-type quasicrystals with local inflation, but, to
our knowledge, only preliminary investigations [19] exist.

For an LI-class ofP -type quasicrystals the minimum inflation multiplier isτ 3, and the
number of patterns invariant undern iterations of such an inflation is

â(3)n = a(3)3n = (a3n)
3. (42)
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Table 5. Inflation orbits of Danzer’s tiling (F -type) and other 3D cut-and-project patterns with
τ -inflation.

n 1 2 3 4 5 6 7 8 9 10

a3
n 1 1 64 125 1331 4096 24 389 91 125 438 976 1 771 561
b
(3)
n 1 0 63 124 1330 4032 24 388 91 000 438 912 1 770 230
c
(3)
n 1 0 21 31 266 672 3 484 11 375 48 768 177 023

Table 6. Inflation orbit counts of the Kramer–Neri tiling (P -type) and other 3D cut-and-project
patterns withτ3-inflation.

n 1 2 3 4 5
a3

3n 64 4096 438 976 32 768 000 2 537 716 544
b̂
(3)
n 64 4032 438 912 32 763 904 2 537 716 480
ĉ
(3)
n 64 2016 146 304 8 190 976 507 543 296

The corresponding numbers,b̂(3)n and ĉ(3)n , are given in table 6 (which is, of course, also
applicable to iterates of theτ 3-inflation operator onF - andB-type quasicrystals).

The ζ -function of theτ 3-inflation operator onT6 is

Ẑ3(x) = (1− 18x + x2)3(1+ 18x + x2)3(1− x2)10

(1− 76x − x2)(1− 4x − x2)6(1+ 4x − x2)9
(43)

with the functional equation and Riemann hypothesis as forZ1(x).
An example of aP -type quasicrystal is the so-called primitive rhombohedral tiling first

described by Kramer and Neri [14]. Itsτ 3-inflation with c = 0 is local [16].

4.2. Cyclic symmetries with one fixed point

In principle, it is a straightforward exercise to determine the Wyckoff positions, which—
through the torus parametrization—also determine the patterns with special symmetries.
This can be done by standard program packages (adapted to the non-crystallographic
symmetries), which will be available soon [9]. In what follows, however, we derive the
symmetry structure explicitly by simple arguments and unravel the relation between the
various subgroups ofYh.

The simplest point symmetries to deal with are those which fix only the origin and
hence do not have 1 as an eigenvalue. For these the simplest version of our fundamental
fact applies.

4.2.1. Inversion symmetry (S2). To count the patterns in an LI-class invariant under−1I
we note that det(−1I− 1I) = −8. So the number of patterns with inversion symmetry is

|N2[(−8)]| = 64. (44)

As explained in a footnote earlier, these patterns correspond to the two-division points of
T6 and are precisely the 64 patterns invariant underτ 3-inflation.

4.2.2. TheS10 subgroups. There are six of these subgroups (one for each fivefold-axis of
the icosahedron) and each is cyclic of the order of 10 and generated by−R5, whereR5 is
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a rotation through 2π/5. Now

det(−R5− 1I) = −4(cos(2π/5)+ 1) = −2τ 2 (45)

so the number of patterns invariant under eachS10 subgroup is|N2[−2τ 2]| = 4.

4.2.3. TheS6 subgroups. There are ten of these (one for each threefold-axis of the
icosahedron) each generated by−R3, whereR3 is a rotation through 2π/3. The number of
patterns invariant under eachS6 subgroup is

|N2[det(−R3− 1I)]| = |N2[−4(cos(2π/3)+ 1]| = 4. (46)

4.3. Mirror symmetries

Let S be one of the 15 mirror symmetries of the icosahedral group and choose an orthonormal
basis ofE so that the(x, y) plane is the mirror plane. With respect to this basis (and the
corresponding orthonormal basis ofEint) Z3⊕Z3 is a lattice inR6 and the indices of the bcc,
primitive and fcc lattices in this are 4, 8 and 16 respectively (see [23]). TakingA = S − 1I
in the subtorus version of the fundamental fact† (see the appendix) we see that the index
of 3ker in Z2⊕ Z2 is 4, 8 and 16 in the bcc, primitive and fcc cases respectively, and that
the index of3im in Z ⊕ Z is 4 in all cases. Hence, the indexg of 3im ⊕ 3ker in 3 is 4
in all three cases. On imA = R ⊕ R the action ofS is inversion, so the determinant,d,
of the restriction ofS to imA is 4. Hence, for all three types of icosahedral quasicrystals
each LI-class has a single 4D subtorus of patterns possessing mirror symmetryS.

For each of the 15 mirror symmetries of the icosahedral group there is exactly one 4D
subtorus of patterns with that symmetry.

Each such subtorus is stable under inversion, so the fundamental fact shows that it
contains exactly 16 inversion symmetric patterns. These patterns are invariant under the
groupC2h (of order 4) generated by inversion and the mirror symmetry. As we shall see,
all these patterns actually have a larger symmetry thanC2h.

4.4. Rotation symmetry

If R2 is the rotation of order 2 about thez-axis then im(R2 − 1I) = ker(S − 1I) and
ker(R2 − 1I) = im(S − 1I). Hence the index of3im ⊕ 3ker in 3 is 4 for all three 6D
lattices. The action ofR2 on im(R2 − 1I) is inversion, so the determinant of the restriction
of R2 to im(R2−1I) is 16 and there are four 2D subtori of patterns with a 2nd order rotation
symmetry about thez-axis.

RotationsR of order 5 and 3 can be treated similarly. The index of3im ⊕ 3ker in 3
is 5 for order 5 rotations and 9 for order 3, and these indices are the same for all three 6D
lattices3. SinceN2[det(R − 1I)] is 5 whenR has order 5 and 9 whenR has order 3, for
each fivefold and threefold rotation axis there is just one 2D subtorus of patterns with that
rotation symmetry. Since this subtorus contains{0} it lies entirely in the subtorus of those
mirror symmetries that contain the rotation axis in their mirror plane. Hence, all patterns
with C5 or C3 symmetry also haveC5v or C3v symmetry.

For each of the six fivefold rotation axes there is exactly one 2D subtorus of patterns with
the correspondingC5 rotation symmetry. A generic pattern on the subtorus has symmetry
groupC5v.

† For simplicity of notation, in this section the same symbol will be used to denote a symmetry of the icosahedron
and the lift of the symmetry toR6.



The torus parametrization of quasiperiodic LI-classes 3049

C3

D5 S10

C5

C2h

S2

D3 S6

Y

Th

T

{e}

C2vD2

C5v

C3v

C1v C2

Yh

D3d

D2h

D5d

B,P

B,P

B,P

B

5

4

3

2

120

60

24

20

12

10

8

6

1

Figure 7. Conjugacy classes of subgroups of the icosahedral group. Heavy circles indicate that
the corresponding group appears in all three cases as a maximal symmetry of some pattern,
while groups with broken circles appear only for patterns ofB- or P -type. Finally, the groups
{e}, C1v , C2, C2v , C3v andC5v admit entire subtori of solutions.

For each of the ten threefold rotation axes there is exactly one 2D subtorus of patterns
with the correspondingC3 rotation symmetry. A generic pattern on the subtorus has
symmetry groupC3v.

As a consequence of this, and by inspection of the diagram of subgroups in figure 7,
it is clear that the fourS10-symmetric patterns for each fivefold axis are automatically also
D5d -symmetric and theS6-symmetric patterns are alsoD3d -symmetric. Note that this also
means that there are no patterns with the tetrahedral groups,T , nor Th = T × S2, the
icosahedral group,Y , nor the groupD3 as their maximal symmetry since all these groups
containC3 but notC3v as a subgroup. Similarly, there is no pattern withD5 as its full
symmetry.

4.5. Patterns with full icosahedral symmetryYh

So far, we have obtained the total numbers of patterns withD3d or D5d symmetry (for a
given axis). It remains to determine which of those patterns have an even larger symmetry
group. As can be seen from figure 7, this larger symmetry group can only be the full
icosahedral groupYh and a pattern isYh-symmetric if and only if it is simultaneouslyD3d -
andD5d -symmetric.

For further analysis we need an explicit determination of the symmetry solutions on
the torus. There is no loss of generality in taking the threefold-axis to be(τ 2, 1, 0) and
the fivefold-axis to be one of(1,±τ, 0). Let us take just the fcc case as an example. The
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Table 7. Point symmetries of the 64 inversion symmetric tilings for the three different icosahedral
types.

Group B-type P -type F -type

Yh 1 2 4
D5d 18 12 0
D3d 30 20 0
D2h 15 30 60

lattice projects to the submoduleMF of Z[τ ]3 in R3 defined by

τ 2x + τy + z ≡ 0 (mod 2)

x + y + z ≡ 0 (mod 2)
(47)

see [4]. (InZ[τ ] there are four residue classes mod 2 with representatives 0, 1,τ , τ 2.) The
intersection of this module withR2 is (2Z[τ ])2 so the four two-division points on theD3d

subtorus project to the multiples of(τ 2, 1, 0) by 0, 1, τ , andτ 2 and the four two-division
points on theD5d subtorus project to the multiples of(1,±τ, 0) by 0, 1,τ , andτ 2. But

τ(τ 2, 1, 0) ≡ (1,±τ, 0) (mod 2) (48)

so the corresponding points are identical on the torus. The multiples of these points are
similarly identified, so eachD3d -symmetric pattern is alsoD5d -symmetric in this case.

This way, we find one pattern with fullYh symmetry for the bcc lattice, two for the
primitive lattice and four for the fcc lattice.

We are now in a position to classify all patterns with inversion symmetry. Letyh be the
number of patterns withYh symmetry. Then for each of the six fivefold-axes there are 4−yh
patterns whose full symmetry isD5d and for each of the ten threefold-axes there are 4− yh
patterns whose full symmetry isD3d . So the total number of patterns of symmetry types
Yh, D5d andD3d is yh + 16(4− yh) = 64− 15yh. Of the 16 patterns withC2h symmetry
for a given twofold-axis,yh have full symmetryYh, 2(4− yh) have full symmetryD5d

and 2(4− yh) have full symmetryD3d (since there are two fivefold and two threefold-axes
perpendicular to the twofold-axis) accounting for 16− 3yh patterns in all. Letc2h andd2h

be the number with full symmetryC2h andD2h respectively. Then

c2h + d2h = 3yh. (49)

The patterns with full symmetryC2h have a single twofold axis but those withD2h symmetry
have three mutually perpendicular twofold axes. Since these patterns have inversion
symmetry and there are 64 inversion-symmetric patterns altogether, we have

15c2h + 5d2h 6 15yh. (50)

Together with (49) this givesc2h = 0 andd2h = 3yh. Since there is equality in (50) the
symmetry types of all patterns with inversion symmetry are now accounted for. In particular,
all 16 C2h-symmetric patterns for each twofold axis are also at leastD2h-symmetric.

Table 7 summarizes these results giving, for each type of lattice, the total number of
patterns of each symmetry type in an LI-class.

We have now accounted for all subgroups with only one fixed point except those of
typeD2.

The different symmetry counts from the different lattice types show that no two
icosahedral cut-and-project patterns obtained from different lattice types are mutually locally
derivable.
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All inversion symmetric patterns are invariant under simpleτ 3-inflation for theP -type.
The fact that there are twoYh-symmetric patterns when the primitive lattice is used confirms
that this lattice has no inflation operator with multiplierτ , asτ -inflation has only one orbit
of length 1 and no orbits of length 2.

For B- andF -type, one of the icosahedral patterns is invariant underτ -inflation. The
other inversion symmetric patterns form three-cycles under inflation. Furthermore, for each
rotation axis or mirror plane of the icosahedron separately, the inflation orbits preserve the
point symmetry of the corresponding patterns.

4.6. Subgroups containing a rotation of the order of 2

As mentioned above, we have, for each rotation axis of the order of 2, precisely four
disjoint 2D subtori ofC2-symmetric patterns. To complete our classification, we need to
know whether these patterns are also mirror symmetric (such as the cases with threefold and
fivefold rotational symmetry). As for the icosahedral symmetry, an explicit determination
of the symmetry solutions (representing symmetric patterns) is needed—we only give the
results here.

It turns out that forB-, P - andF -type there are one, two and four subtori, respectively,
that lie entirely within the 4D subtori of those mirror reflections that fix the rotation axis
under consideration. Consequently, the patterns on these subtori are at leastC2v-symmetric.
Since all possible higher symmetries also contain space inversion, the corresponding patterns
have already been classified. In fact, eachC2v-subtorus contains exactly one solution with
full icosahedral symmetry.

We can now conclude that there are no patterns withC2 orD2 as maximal symmetry in
theF case, but we must haveC2-symmetric ones for bcc and primitive lattices (no proper
supergroup ofC2 exceptC2v admits an entire subtorus of solutions, compare with figure 7).
Finally, an explicit check shows that there are noD2-symmetric patterns for theP -type,
but 12 of them for each twofold-axis when the bcc lattice is used. So in this case we get
another 60 isolated solutions to a subgroup with only one fixed point. They form orbits of
length 6 under inflation.

With this, the classification of the possible geometric symmetry subgroups is complete,
and we have indicated, while working through the various cases, how the symmetric patterns
group into inflation orbits.

5. Concluding remarks

The torus parametrization of cut-and-project patterns has been introduced in order to
illuminate the stucture of the corresponding local isomorphism classes, in particular to
investigate patterns of special symmetry, either ordinary point or more general inflation
symmetry. The concept was illustrated by various examples of tilings in dimensions less
than or equal to three withτ - or τ 3-inflation. Clearly, the method can be applied to other
cases of physical interest, such as planar quasicrystals with eightfold or twelvefold symmetry
[11], and also to higher-dimensional cases such as the Elser–Sloane 4D quasicrystal based
on the root latticeE8. The results will be reported separately.

In this article, it was our aim to set the scene and to explain, for the most important
examples, what the general structure is and which of the aspects are universal. It is
perhaps rather surprising that these results largely depend only on the eigenvalues of the
operators. There is more variability between LI-classes (or, more precisely, S-MLD-classes
[5]), however, in the way symmetries distribute over regular and singular patterns, which
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depends on the size, shape and orientation of the window as well as on the lattice. This is
certainly worth further investigation, though some topological constraints are obvious from
recent considerations [15].

Although the picture of quasiperiodic LI-classes looks quite promising in this light,
much less is known about other cases, even in one dimension. Many prominent examples,
such as the Thue–Morse chain, can be partially dealt with individually, but at the moment
we do not know of any general method to treat them in a similar fashion to the quasiperiodic
cases. It would be interesting to see some unified results, perhaps for a substantial subclass
with sufficiently amiable properties such as closure and strict ergodicity under translations.
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Appendix. General structure of the torus parametrization

Let us now consider, in a more general fashion, the situation of a discrete pattern (a tiling
or point set with certain point and inflation symmetries) that is obtained from a higher-
dimensional periodic structure by the projection method. This means that we consider an
LI-class which is closed under the action of these symmetries and which is quasiperiodic
in the sense that the diffraction image consists of Bragg peaks only. Right from the
start, we have a lattice embedding at our disposal where all symmetries are represented
by lattice endomorphisms (i.e. integer matrices with respect to the lattice basis), or by affine
extensions of that. The entire space spanned by our lattice,3, is the direct sum of some
spaceE which carries the tiling (often calledphysical or tiling space) and some spaceEint

(the internal space). Both are invariant under the action of all of our symmetries under
consideration.

We further assume that the embedding is minimal (hence the lattice,3, projects densely
into Eint) and that the origin is the only point inE ∩ 3 (which is a kind of irrationality
assumption). This is actually no restriction, but simplifies the discussion considerably.
Also, we only consider structures that are described by an admissible window system,W ,
which is compatible with our symmetries, in other words for which there is always at least
one (possibly singular) pattern of maximal symmetry, and this is, in our setting, the one
parametrized by the trivial solutiont = 0. Finally, we assume that the boundary,∂W , of the
windows is of the measure 0, as otherwise several unphysical features can arise, including
a deviation from quasiperiodicity as defined above.

Our tiling defines an LI-class which can be parametrized by the points of one
fundamental domain of the lattice3 which is, after proper identification of translationally
equivalent boundaries, ann-dimensional torus,Tn (with n being the rank of3). A point t
of Tn either corresponds uniquely to oneregular tiling (iff t is not in the set∂W +πint(3))
or to a finite† number ofsingular tilings which are identified in this picture (they differ
only in mismatches of density 0, such as points on lower-dimensional manifolds). With this

† If the window is not a polytope, but more complicated such as fractally shaped, it might occur that one identifies
infinitely many tilings here. However, as long as∂W has measure 0, the (singular) tilings of the LI-class identified
cannot differ in mismatches of positive density. (This statement follows from various results, in particular [25,
section 2.2.3].) Furthermore, regular tilings are still generic in the LI-class.
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identification, one can now determine tilings with special symmetries by solving appropriate
equations on the torus!

A.1. Symmetry analysis and proof of the fundamental fact

A generalized symmetry is given by a mapping,Tn→ Tn, of the form

t 7→ At+ c modTn (A.1)

wherec ∈ Tn andA is an integer matrix in the torus basis. (For geometric point symmetries,
we actually havec = 0 due to our standardization.) Tilings with such a symmetry are just
those parametrized by fixed points of (A.1) onTn and hence solve the equation

(A− 1I)t+ c = 0 modTn. (A.2)

The fundamental fact states that there are precisely

k = |det(A− 1I)| (A.3)

isolated solutions. They are the only ones if(A− 1I) is regular, i.e. if k 6= 0. If, however,
(A − 1I) is singular, the solutions are never isolated, but fill entire subtori. Let us now
formulate the underlying structure together with a proof.

Fundamental fact (point version).Let 3 be a lattice inRn andA a non-singular linear
operator onRn with A3 ⊆ 3. (HenceA acts on a fundamental region of3, which is an
n-dimensional torusTn = Rn/3.) Take anyc ∈ Tn. Then the number of pointst ∈ Tn
with

At = c (A.4)

is d = |detA|.
Proof. At = c on Tn if and only if t = u+ A−1c, whereAu ∈ 3, so we need to count
the number of solutions,u, to Au ∈ 3 that are distinct mod3. ClearlyA−13 ⊇ 3 and
the index isd, so this number of solutions isd. �
Fundamental fact (subtorus version).Let3 be a lattice inRn andA a diagonalizable linear
operator onRn with A3 ⊆ 3. Put s = dim(kerA), 3ker = 3∩ kerA and3im = 3∩ imA

and letg be the index of3im ⊕3ker in 3 andd the determinant of the restriction ofA to
imA. Then the pointst ∈ Tn with

At = 0 (A.5)

comprised/g s-dimensional subtori ofTn which are translates of each other.

Proof. SinceA is diagonalizable, we have imA ⊕ kerA = Rn, and sinceA3 ⊆ 3, 3im

and3ker are lattices of full dimension in imA and kerA, respectively. Everyx ∈ Rn can be
written asx = y+z, with y ∈ imA andz ∈ kerA, andAx ∈ 3 if and only if A′y ∈ 3im,
whereA′ is the restriction ofA to imA and is non-singular since imA ∩ kerA = {0}. By
the point version of the fundamental fact there ared points y1, . . . ,yd in imA (distinct
mod3) with A′yi ∈ 3im. Hence, the solutions ofAx ∈ 3 are

x = yi + z (i = 1, . . . , d, z ∈ kerA) (A.6)

which reduce mod3 to the subtori ofTn

T(yi ) = yi + (kerA/3ker) (i = 1, . . . , d). (A.7)

Let u1 + v1, . . . ,ug + vg (ui ∈ imA, vi ∈ kerA) be a set of coset representatives of
3im ⊕ 3ker in 3. Thenu1, . . . ,ug are distinct mod3im andT(yi ) = T(yj ) if and only
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if yi − yj ≡ uk (mod3im) for somek. So subtori (A.6) are equal in sets ofg. Hence,
the points,t, on Tn with At = 0 consist ofd/g translates of thes-dimensional subtorus
kerA/3ker. �

A.2. The structure of the symmetry solutions onTn

Let c = 0. Then (A.2) is a homogeneous equation, so the superposition principle guarantees
that the set of solutions has an important additional structure: it forms an Abelian subgroup
of Tn. This will be helpful later. For any finite shiftc, the general solution is obtained
from one particular solution of the inhomogeneous case plus any solution of the linear case.

Let now (A − 1I) be non-singular. If we consider a special solutiont0 of (A.1), it
generates (sincec = 0) an additive subgroup ofTn of solutions which must be of the finite
order ofk. Written in the torus basis, every solutiont0 takes the following standard form:

t0 = 1

m
(l1, l2, . . . , ln)

t (A.8)

with non-negative integersl1, l2, . . . , ln all smaller than the integerm 6 k, and
gcd(m, l1, l2, . . . , ln) = 1 (overall coprimality).

On the other hand, now takeany rational point of the form (A.8). If we now act with
an invertible integral matrix,M, of infinite order (which may represent e.g. an inflation,
assumed strictly linear for the moment) on such at0, the image is again a point with rational
coordinates with the samem—hence iterated action ofM generates a closed orbit onTn.
This means:every rational point onTn is a solution to a certain symmetry (at least to a
higher inflation), and they are obviously the only ones. The tilings with special symmetries
correspond to rational points onTn, which are of the measure 0, but dense. Furthermore,
they can have a rather complicated relation to the set of singular points (which are also of
the measure 0 and dense).

A.3. Joint classification of point and inflation symmetries

One standard situation is that the inflationM acts onE andEint just as a multiplication.
In this case,M commutes withS for all point symmetries,S, of the tiling and symmetry
is preserved on inflation orbits, i.e. all members of one inflation orbit share the same point
symmetry (if any). This observation has been used above to predict simultaneous point and
inflation symmetries, even if only the total number of solutions in each case is known.

For the more general case, we have to consider the inflation to beaffine:

t 7→ Mt+ c (A.9)

where, witha := −Mc, c can also be expressed asc = a−Ma. The fixed points of this
transformation are clearly those of the linear transformationM, shifted bya. This indicates
a shift of the inflation origin bya on the torus. (For the pattern, it is the part ofa parallel
to E which fixes the inflation centre relative to the point symmetry centre.) The following
cases can be distinguished:

(1) a is rational and a solution for a geometric point symmetryS. ThenS still commutes
with the inflation and nothing is changed in their joint classification (except possibly the
assignment of the special patterns to the inflation orbits).

(2) a is rational, but not a solution for a geometric point symmetryS. All isolated
solutions with geometric point symmetry still also possess an inflation symmetry, but
inflation orbits no longer preserve symmetry. A joint classification is possible, but less
natural.
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(3) a is irrational. Isolated solutions for point symmetries never show inflation
symmetry.

A.4. Translation classes

While a shift parallel toEint may change the character of the inflation (and in general even
affects its locality), a shift in the physical direction simply moves the inflation centre. Since
a choice here is somehow arbitrary, it is quite natural to consider elementary translation
classes of tilings rather than single tilings themselves. Such classes consist of a special
pattern and all its global translates. On the torus, they show up as

[t0] := {t0+ a modTn|a ∈ E}. (A.10)

SinceE ∩3 = {0} by assumption, there is at most one rationalt in [t0]. Consequently, we
have a one-to-one relation between elements of the LI-class with special point or rescaling
symmetries and their elementary translation classes if it is a situation withfinitely many
solutions. The torus parametrization can thus be used equally as well to classify translation
classes. A bit more care is needed in situations with continuous manifolds of solutions, but
we do not go into detail here.
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